Section 5-3

Binomial Probability

Distributions

Binomial Probability Distribution

A binomial probability distribution results from a procedure that meets all the following requirements:

1. The procedure has a fixed number of trials.
2. The trials must be independent. (The outcome of any individual trial doesn't affect the probabilities in the other trials.)
3. Each trial must have all outcomes classified into two categories (commonly referred to as success and failure).
4. The probability of a success remains the same in all trials.

$$
\text { Copyrigh © } 2010 \text {, 2007, 2004 Peasson Education, Inc. Al Rlights Reseseved } \quad 5.1-2
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Notation for Binomial Probability Distributions

S and F (success and failure) denote the two possible categories of all outcomes; p and q will denote the probabilities of S and F, respectively, so
$P(S)=p \quad(p=$ probability of success)
$P(F)=1-p=q \quad(q=$ probability of failure $)$

Notation (continued)

$n \quad$ denotes the fixed number of trials.
$x \quad$ denotes a specific number of successes in n trials, so x can be any whole number between 0 and n, inclusive.
p denotes the probability of success in one of the n trials.
q denotes the probability of failure in one of the n trials.
$P(x)$ denotes the probability of getting exactly x successes among the n trials.

Method 1: Using the Binomial

 Probability Formula$$
P(x)=\frac{n!}{(n-x)!x!} \cdot p^{x} \cdot q^{n-x}
$$

for $x=0,1,2, \ldots, n$
where
$n=$ number of trials
$x=$ number of successes among \boldsymbol{n} trials
$p=$ probability of success in any one trial
$q=$ probability of failure in any one trial $(q=1-p)$
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad

Method 2: Using Technology

STATDISK, Minitab, Excel, SPSS, SAS and the TI-83/84 Plus calculator can be used to find binomial probabilities. STATDISK

MINITAB

			- $\square^{\text {a }}$
Num Trals, ne	c 5		Evaluate
Success Prob, 0 : 075			
Mean: StDer Variance	$\begin{aligned} & 3.7500 \\ & 0.9082 \\ & 0.9375 \end{aligned}$		
\square			
Help? Cliear copy			

x	$\mathrm{P}(\mathrm{x})$				
	0	$\mathbf{0 . 0 0 0 9 7 7}	$	1	0.014648
---:	---:				
2	0.087891				
3	0.263672				
4	0.395508				
5	0.237305				

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Method 2: Using Technology
STATDISK, Minitab, Excel and the TI-83 Plus calculator can all be used to find binomial probabilities.

EXCEL

	A	B
1	0	0.000977
2	1	0.014648
3	2	0.087891
4	3	0.263672
5	4	0.395008
6	5	0.237305

TI-83 PLUS Calculator

Rationale for the Binomial Probability Formula

$$
P(x)=\frac{n!}{(n-x)!x!} \cdot p^{x} \cdot q^{n-x}
$$

The number of outcomes with exactly x successes among n trials

Binomial Probability Formula

Number of outcomes with
exactly x successes among n trials

The probability of \boldsymbol{x} successes among n trials for any one particular order

3 \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples

EX: 7, 9, 13, 15, 25, 30, 36
\qquad
\qquad 4

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
For Any Discrete Probability Distribution: Formulas
Mean

$$
\mu=\Sigma[x \cdot P(x)]
$$

Variance
$\sigma^{2}=\left[\Sigma x^{2} \cdot P(x)\right]-\mu^{2}$
Std. Dev $\sigma=\sqrt{\left[\sum x^{2} \cdot P(x)\right]-\mu^{2}}$
5.1-13

Binomial Distribution: Formulas

Mean $\quad \mu=n \cdot p$
Variance $\sigma^{2}=n \bullet p \cdot q$
Std. Dev. $\quad \sigma=\sqrt{n \cdot p \cdot q}$
\qquad
\qquad
\qquad
\qquad
Where
$n=$ number of fixed trials
$p=$ probability of success in one of the n trials $q=$ probability of failure in one of the n trials
\qquad
\qquad
\qquad

Interpretation of Results

It is especially important to interpret results. The range \qquad rule of thumb suggests that values are unusual if they lie outside of these limits:

Maximum usual values $=\mu+2 \sigma$
\qquad
\qquad
Minimum usual values $=\boldsymbol{\mu}-2 \boldsymbol{\sigma}$

