

Binomial Probability Distribution

A binomial probability distribution results from a procedure that meets all the following requirements:

- 1. The procedure has a fixed number of trials.
- 2. The trials must be independent. (The outcome of any individual trial doesn't affect the probabilities in the other trials.)
- 3. Each trial must have all outcomes classified into two categories (commonly referred to as success and failure).
- 4. The probability of a success remains the same in all trials.

Notation for Binomial Probability Distributions

S and F (success and failure) denote the two possible categories of all outcomes; *p* and *q* will denote the probabilities of S and F, respectively, so

P(S) = p (p = probability of success)

P(F) = 1 - p = q (q = probability of failure)

Notation (continued)

- *n* denotes the fixed number of trials.
- denotes a specific number of successes in n trials, so x can be any whole number between 0 and n, inclusive.
- *p* denotes the probability of success in *one* of the *n* trials.
- *q* denotes the probability of failure in one of the *n* trials.
- P(x) denotes the probability of getting exactly x successes among the *n* trials.

2004 Pearson Education, Inc. All Rights Reserved

Method 1: Using the Binomial Probability Formula

$$P(x) = \frac{n!}{(n-x)!x!} \cdot p^x \cdot q^{n-x}$$

. . ., n

where

n = number of trials

ht © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

Clear Copy

Help?

- x = number of successes among n trials
- *p* = probability of success in any one trial
- q = probability of failure in any one trial (q = 1 p)

Method 2: Using Technology STATDISK, Minitab, Excel, SPSS, SAS and the TI-83/84 Plus calculator can be used to find binomial probabilities. STATDISK **MINITAB** Binomial Pr P(x) х Evaluate ess Prob, p: 0.75 0 0.000977 3.7500 0.9682 0.9375 Mean: St Dev 1 0.014648 2 0.087891 3 0.263672 4 0.395508 5 0.237305

5.1 -

5.1 - 4

Rationale for the Binomial Probability Formula

 $p^x \cdot q^{n-x}$

 $P(x) = \frac{n!}{(n-x)!x!}$

rson Education, Inc. All Rights Re

The number of outcomes with exactly *x* successes among *n* trials

Recap

In this section we have discussed:

- The definition of the binomial probability distribution.
- Notation.
- Important hints.

004 Pearson Education, Inc. All Rights Reserv

Three computational methods.

5.1 - 10

Rationale for the formula.

Binomial Distribution: Formulas

Mean $\mu = n \cdot p$

Variance $\sigma^2 = n \cdot p \cdot q$

Where

n = number of fixed trials

Pearson Education, Inc. All Rights Reserved

p = probability of success in one of the *n* trials

q = probability of failure in one of the *n* trials

Interpretation of Results

It is especially important to interpret results. The range rule of thumb suggests that values are unusual if they lie outside of these limits:

Maximum usual values = μ + 2 σ Minimum usual values = μ - 2 σ

5.1 - 15

Recap

In this section we have discussed:

- Mean, variance and standard deviation formulas for any discrete probability distribution.
- Mean, variance and standard deviation formulas for the binomial probability distribution.
- Interpreting results.

tion. Inc. All Rights Reserved

